H(12)=-16t^2+20

Simple and best practice solution for H(12)=-16t^2+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(12)=-16t^2+20 equation:



(12)=-16H^2+20
We move all terms to the left:
(12)-(-16H^2+20)=0
We get rid of parentheses
16H^2-20+12=0
We add all the numbers together, and all the variables
16H^2-8=0
a = 16; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·16·(-8)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*16}=\frac{0-16\sqrt{2}}{32} =-\frac{16\sqrt{2}}{32} =-\frac{\sqrt{2}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*16}=\frac{0+16\sqrt{2}}{32} =\frac{16\sqrt{2}}{32} =\frac{\sqrt{2}}{2} $

See similar equations:

| 25+100x=10(4-5x) | | 2x+7+19=180 | | 9x+10=44 | | 0=7(1+k)+7(-k-5) | | (3x+19)=(5x-17) | | 7y-5y-9=15.12 | | 30r2+15r=0 | | -127=-1-2(7+7n) | | 7x-10=6(1-2x) | | 8x+-3=48 | | 2(-8p+8)=144 | | 8x+-40=48 | | 3x+24/4=54 | | 3n-8(1+7n)=310 | | 1/4=5r/2 | | 4s=5 | | 5+20x=5x+65 | | 10^3x+4=100 | | p/6=-19=-9 | | 8r2-24r=0 | | 3z+24=105 | | b2+25b=0 | | 2/8=12/n | | r2-6r+5=0 | | 1/2x+-8=3 | | 5.5*x=16.5 | | q/3=q/2 | | X^2+3x-7000=0 | | 5a-6a=12 | | -9d+-4d+-2d+8=-3d | | 10x-6=2(5x-3) | | N×0.75=n/4× |

Equations solver categories